
Build Your Own EFIS, Part 2
An introduction to building and programming an Electronic Flight
Instrument System.

BY JAMES P. HAUSER

In the first of this series, I presented the minimum of what you may expect from a build-
it-yourself EFIS. These articles are condensed from my book titled “Building and
Programming Electronic Flight Instrument Systems.”

In this installment, I will present the development of a simple attitude display using MS
QBASIC (Microsoft Quick Beginners All purpose Instruction Code). This will introduce
you to programming graphical displays as well as the general idea of programming. The
primary purpose of this installment is to demystify the programming of graphics displays,
especially EFIS. Although considerable persistence is required to produce a functional
display, there is no great magic involved. You may feel a bit (or a lot) overwhelmed at
first if you have no experience in programming. But, if you can use a word processor,
you can program your PC in QBASIC. My recommendation is to carefully follow
through the steps as presented in this article. At the end, you will be rewarded with a
simple attitude indicator working on your PC. It is unlikely that you will be a proficient
programmer as a result, but it will be a start.

I should also point out that there are open source programs being prepared which will
obviate the need to learn how to program your own EFIS, but it is still worthwhile to go
through the exercise. There also may be commercial programs available. But, in addition
to being an added cost, commercial programs may not be modified to meet your personal
preferences.

I have several reasons for using QBASIC. One, it is readily available on most PC’s. Two,
it is easy to learn. And third, it has a primitive graphics engine so that it is not necessary
that you understand methods such as Bresenham’s algorithm, line clipping, rasterization,
etc. That being said, QBASIC is not suitable as a programming language for an actual
EFIS. Except for the most primitive of displays, it is simply too slow. But, that does not
lessen its usefulness as a learning tool. (Once upon a time there was a faster version
available, but it has been discontinued. Later versions of MS Visual Basic are a
possibility, but I have not made a run time comparison.)

I will provide four examples. The first three will be thoroughly explained. The last
example will expect you to explore the QBASIC “Help” to understand the details. It is a
truism that the only way to learn programming is to program. You should expect to make
errors. Finding and correcting those errors is the best teacher.

Although there are many common errors, typographical errors are sometimes the most
difficult to find and deserve special mention. This is because a variable such as X0 (X
‘zero’) and XO (X ‘Oh’) look similar but are different variables to QBASIC. This is one

of the drawbacks to QBASIC. It does not require that variable be declared. It simply
declares them “on the fly”.

This installment is very much a “hands on” tutorial. Although you are encouraged to give
this installment a cursory review before beginning, it is important to be sitting at a PC
while trying to understand what follows.

First, you need to locate the QBASIC program and its Help file. I assume in this article
that you have access to a Microsoft Windows based PC. There are several ways to
proceed. The easiest is to use the Find function. Click “Start”, then “Find”, and then
“Files or Folders.” Enter “QBASIC” in the “Named” entry. “Look in” should be the boot
drive, most likely “C:”. Users of Windows 3.X should use Explorer to find QBASIC.

If there are no QBASIC files, then the Windows installation CD or disks should be
searched. As a last resort, QBASIC may be downloaded free from the Microsoft web site.
The following URL should lead you to the correct Microsoft download location.

 http://www.johuco.com/snail/snail.html

After locating the QBASIC Application file (QBASIC.exe), I recommend that you copy
it and the QBASIC Help File (QBASIC.hlp) to a folder created to work through the
examples to follow. Right click on the QBASIC files and drag them to the new folder.
Select copy from the menu that appears when the right button is released. Alternatively, if
disk space is limited, shortcuts can be created.

(A new directory may be created by double clicking on My Computer, double click on a
convenient hard drive (ex. C:), then select New Folder from the File menu. Type in a
convenient name such as QBEFIS, then press “Enter” twice. This will open the new
folder. You may wish to create a shortcut to this folder on the Desktop.)

If more than one version of the Application or the Help file is shown, use the latest
version.

In the new folder, right click on the blue QBASIC icon, select “Properties”, then
“Screen”. Under “Usage”, click on “Full-screen”. This is not absolutely necessary, but
QBASIC appears to behave better in full screen mode.

Now double click on the blue QBASIC icon in the new folder. After QBASIC opens,
pressing the Esc key will present the user with a blank window for entering code. Verify
that your mouse is working. If not, you will need to use the arrow keys to navigate. In
any case, it is unlikely that any mouse scroll wheel will work, as a DOS driver is required
for this function.

Our first bit of code is text based for those readers with no programming experience. It is
the classic “Hello World!” program. It consists of one line:

 PRINT “Hello World!”

http://www.johuco.com/snail/snail.html

Type this line in the blank window then press F5. A DOS screen should appear with
“Hello World!” Press any key to return to the QBASIC programming window. To close
QBASIC and return to Windows, select Exit from the File Menu or press Alt, then F, and
then X. If you wish to return to Windows without closing QBASIC, press the Alt and Esc
keys simultaneously (Alt + Esc).

You are strongly encouraged to explore the QBASIC window. This will lead to more
comfort in using this programming environment.

If at any time a program stops running but does not return to the QBASIC window, press
Ctrl + C or Ctrl + Break. This should terminate the program and return to QBASIC.

As the next step, modify the “Hello World! Program as follows. This illustrates one of
the fundamental techniques of programming, namely looping. In this case, it uses the
FOR ... NEXT loop.

' This routine prints "Hello World!" to the terminal screen 10 times.

FOR I = 1 TO 10

 PRINT I, "Hello World!"

NEXT I

END

The function of the FOR ... NEXT loop should be fairly apparent. The first line is a
comment and is not executed by QBASIC.

Now that we have the basics for entering and running a program in QBASIC, we can now
begin to build a graphic display of an attitude indicator. First, we need to talk a bit about
Screen Modes.

Drawing a line

As most PC users know, there are a variety of screen modes. For example, standard VGA
is 640 pixels wide by 480 pixels high while Super VGA is 800x600. A pixel is the
smallest element of a screen picture and has one and only one color. As you might
expect, the more pixels, the more processing time is required to draw a picture pixel by
pixel. So, for our tutorial, we will use a mode with a resolution of 640x480. In QBASIC,
Mode 12 has this resolution. However, for a more realistically sized display, we will only
use a 320x240 window within the 640x480 screen. This will also speed up the program
by reducing the number of pixels that must be plotted.

Start QBASIC and enter the following code:

' This routine draws a horizontal line

SCREEN 12 ' Set Screen Mode 640x480

CLS ' Clear the screen

LINE (0, 120)-(319, 120), 9 ' Draw a Blue Horizontal Line

WHILE (INKEY$ = ""): WEND ‘ Wait for a keystroke to end

END

Run this program (F5). A blue line should horizontally bisect the upper left quarter of the
screen. If not, correct typing errors and try again. Press the Space Bar to end. Then, press
any key to return to the QBASIC code window.

Now is a good time to learn how to save a program. Click on File in the tool bar and
select Save (Alt, F, S). Enter a convenient name such as BlueLine and press Enter.

Now that you have a working program, I will explain the code you have entered.

' This routine draws a horizontal line

This is a comment. QBASIC interprets all text following an apostrophe or REM
as a comment. Comments are not processed as instructions. However, comments
are very important to the readability of the code. Use them freely.

SCREEN 12

This line simply sets the display to Screen Mode 12 (16 colors, 640x480). Click
on the instruction SCREEN and press F1. A help screen should appear which
details all the variations of this instruction and its nuances. More on this command
later.

CLS

This instruction sets all the pixels on the screen to black (or off).

LINE (0, 120)-(319, 120), 9

This instruction draws a line with the left coordinate at 0, 120 and the right
coordinate at 319, 120. The last parameter is the color. In this case, “9” sets the
line color to blue. Contrary to what might be expected, the upper left corner of the
screen is 0, 0. Thus, X increases to the right and Y increases downward.

WHILE (INKEY$ = ""): WEND

This is an example of a WHILE...WEND loop. The program will continue to
repeat this loop WHILE the value in the parentheses is true. In this case, it
provides a convenient pause until the Space Bar (or any key) is depressed. The
parentheses are not essential, but they make the code more readable. Here, the
loop has been concatenated onto one line by use of the colon “:”. (Concatenated
means more than one instruction is placed on a line. Each instruction on that line
must be separated by a colon “:”. Spaces and tabs are ignored.)

END

This is simply the end or exit command for the program.

Drawing a “Wings Level” Attitude Indicator

It is quite possible to use the LINE instruction as used in BlueLine to draw all the
features of an attitude indicator. However, the LINE instruction has options to draw both
unfilled and filled rectangles.

Click on LINE in the previous program, and then press F1. The Help screen for this
instruction should be displayed. From this screen we see that a B or BF appended to the
instruction will produce an unfilled or filled box respectively. We will now use this
option to draw a “wings level” attitude indicator. No roll markings are drawn, only pitch
markings.

Open the BlueLine program and save as WingsLvl or other convenient name. Modify this
program to be as follows:

' This routine draws a simple wings level attitude display

SCREEN 12 ' Set Screen Mode 640x480

CLS ' Clear the screen

LINE (0, 0)-(319, 120), 9, BF ' Draw Sky
WHILE (INKEY$ = ""): WEND

LINE (0, 120)-(319, 239), 2, BF ' Draw Earth
WHILE (INKEY$ = ""): WEND

LINE (160 - 25, 120-2)-(160 - 8, 120 + 2), 14, BF ' Draw Left Wing
WHILE (INKEY$ = ""): WEND

LINE (160 + 25, 120 - 2)-(160 + 8, 120 + 2), 14, BF ' Draw Right Wing
WHILE (INKEY$ = ""): WEND

CIRCLE (160, 120), 2, 14 ' Draw Fuselage Outline
WHILE (INKEY$ = ""): WEND

LINE (160 - 1, 120 - 1)-(160 + 1, 120 + 1), 14, BF ' Fill Fuselage

WHILE (INKEY$ = ""): WEND

END

Save and run this program.

Following each LINE instruction is the instruction we used previously to pause the
execution of the program. This allows you to see the result of each individual LINE
instruction. Press the space bar to proceed from one LINE instruction to another. The
last space bar will terminate the program.

I have also introduced the CIRCLE instruction in this program. The Help screen explains
its usage.

Color Palette

Thus far, we have simply provided the numbers for the colors used by the drawing
instructions. The QBASIC Help provides the correspondence between the sixteen
available colors and the numbers.

GOSUB Procedures

To aid in the organization of subsequent programs, we introduce the GOSUB procedure.
This method allows the main program to be relatively free of details. The format of a
program with a GOSUB procedure is:

 GOSUB Name ‘ Go to the subroutine Name

END ‘ End of main program

Name: ‘ Subroutine Name + “:”
... ‘ Subroutine code here
RETURN ‘ Return from subroutine

For example, the BlueLine program could be coded as:

' This routine draws a horizontal line using GOSUB procedures

GOSUB Initialize

GOSUB DrawLine

GOSUB WaitBar

END

‘ GOSUB Procedures

Initialize: ‘ Procedure label

SCREEN 12 ' Set Screen Mode 640x480

CLS ' Clear the screen

RETURN ‘ Return to main program

DrawLine: ‘ Procedure label

LINE (0, 120)-(319, 120), 9 ' Draw Horizontal Line

RETURN ‘ Return to main program

WaitBar: ‘ Procedure label

WHILE (INKEY$ = ""): WEND ‘ Wait for space bar (or any key)

RETURN ‘ Return to main program

Note that each procedure label must be followed by a colon. All GOSUB procedures
referred to in the main code must appear somewhere in the code. (But, after the END
statement.) Otherwise, QBASIC will generate an “Label not defined” error. The order of
the appearance of the procedures is unimportant.

The GOSUB is similar to the subroutine method to be used in the next example. The
subroutine method is more commonly used in other computer languages. The GOSUB
method is peculiar to the BASIC family of languages.

Attitude Indicator with Roll and Pitch Marks

Until now, all of our lines have been horizontal. Roll marks introduce a new challenge.
They are drawn at an angle. We could, of course, carefully calculate the end points of
fixed roll marks and enter those numbers in the LINE instruction. But, since we will also
need to know how to rotate the displayed image, we will include a subroutine which will
calculate the position of a point after the image is rotated about the origin by some angle.
In the interest of brevity, I will not explain the mathematics behind this calculation.

As before, save the previous PitchMrk program as RollMark. Modify to the code below
and save the result. Run the program. The keypad provides input for roll and pitch.
Increase pitch = “8”, decrease pitch = “2”, left roll = “4”, and right roll = “6”. To
terminate, press the Escape key.

When you begin typing the last few lines, beginning with SUB, QBASIC will open a new
window. This is a subroutine window. When finished, press F2 and then Enter to return
to the main program window.

If you have this article in electronic form, you may copy and paste the code into Notepad,
then save as RollMark.bas into your QBASIC folder. When saving, be sure to select

Save as type: All Files(*.*). Otherwise, Notepad will append “.txt” to your file.
RollMark.bas may then be opened and run from QBASIC.

' This routine draws an attitude display with pitch and roll control

DECLARE SUB Rotation (X1!, Y1!, CosTheta!, SinTheta!, X2!, Y2!)

 GOSUB Initialization

 WHILE (Done = False)

 GOSUB DrawSky

 GOSUB DrawEarth

 GOSUB DrawPitchMarks

 GOSUB DrawAirplane

 GOSUB DrawRollMarks

 GOSUB GetKey

 WEND

END

' GOSUB Procedures

WaitBar: ' This subroutine waits for the Esc key to be depressed

 WHILE (INKEY$ <> CHR$(27)): WEND

RETURN

Initialization:

 Esc$ = CHR$(27)

 False = &H0: True = &HFF

 Done = False

 pi = 4! * ATN(1)

 Xmin = 160: Ymin = 120

 Xmax = Xmin + 319: Ymax = Ymin + 239

 Xctr = (Xmin + Xmax) / 2: Yctr = (Ymin + Ymax) / 2

 AngularScale = 4

 Pitch = 0: Roll = 0

 UpArrow$ = "2": DnArrow$ = "8"

 RtArrow$ = "4": LtArrow$ = "6"

 SCREEN 12 ' Set Screen Mode 640x480 (VGA)

 CLS ' Clear the screen

RETURN

DrawSky:

 LINE (Xmin, Ymin)-(Xmax, Ymax), 9, BF ' Draw Sky

RETURN

DrawEarth: ' Draw Earth

 ' First calculate the endpoints of the border. For this simple example
 ' we assume that Roll is less than +/- 90 degrees. (A divide by zero
 ' will occur at +/- 90 degrees.)

 TanRoll = TAN(Roll * pi / 180)

 PitchOffSet = AngularScale * Pitch / COS(Roll * pi / 180)

 YL = -160 * TanRoll: YR = 160 * TanRoll

 X1 = Xmin: Y1 = Yctr + YL + PitchOffSet
 X2 = Xmax: Y2 = Yctr + YR + PitchOffSet
 X3 = Xmax: Y3 = Ymax
 X4 = Xmin: Y4 = Ymax

 ' Now draw a polygon using the points

 LINE (X1, Y1)-(X2, Y2), 0
 LINE (X2, Y2)-(X3, Y3), 0
 LINE (X3, Y3)-(X4, Y4), 0
 LINE (X4, Y4)-(X1, Y1), 0

 ' Select a point within the polygon and fill with color Green.

 SELECT CASE Ymax

 CASE IS > Y1
 PAINT (Xmin + 1, Ymax - 1), 2, 0

 CASE IS > Y2
 PAINT (Xmax - 1, Ymax - 1), 2, 0

 END SELECT

RETURN

DrawAirplane:

 LINE (Xctr - 25, Yctr - 2)-(Xctr - 8, Yctr + 2), 14, BF ' Draw Left Wing

 LINE (Xctr + 25, Yctr - 2)-(Xctr + 8, Yctr + 2), 14, BF ' Draw Right Wing

 CIRCLE (Xctr, Yctr), 2, 14 ' Draw Fuselage Outline

 PAINT (Xctr, Yctr), 14, 14 ' Fill Fuselage

RETURN

DrawPitchMarks:

 SinAngle = SIN(Roll * pi / 180)
 CosAngle = COS(Roll * pi / 180)

 FOR Mark = -20 TO 20 STEP 5

 PitchLine = -(Mark - Pitch) * AngularScale

 IF ((Mark MOD 10)) THEN HalfWidth = 20 ELSE HalfWidth = 40

 XL = -HalfWidth: XR = HalfWidth

 YL = PitchLine: YR = PitchLine

 CALL Rotation(XL, YL, CosAngle, SinAngle, X1, Y1)
 CALL Rotation(XR, YR, CosAngle, SinAngle, X2, Y2)

 XLt = Xctr + X1: YLt = Yctr + Y1
 XRt = Xctr + X2: YRt = Yctr + Y2

 ' Check if marks within window

 DrawMark = True

 IF (XLt < Xmin OR YLt < Ymin) THEN DrawMark = False
 IF (XRt < Xmin OR YRt < Ymin) THEN DrawMark = False
 IF (XLt > Xmax OR YLt > Ymax) THEN DrawMark = False
 IF (XRt > Xmax OR YRt > Ymax) THEN DrawMark = False

 IF (Mark = 0) THEN DrawMark = False

 IF (DrawMark) THEN LINE (XLt, YLt)-(XRt, YRt), 15

 NEXT Mark

RETURN

DrawRollMarks:

 ' Draw fixed pointer

 ' Compute the corners of the triangle

 X1 = Xctr - 7: Y1 = Ymin + 18
 X2 = Xctr + 8: Y2 = Ymin + 18
 X3 = Xctr: Y3 = Ymin + 10

 ' Draw the outline

 LINE (X1, Y1)-(X2, Y2), 14
 LINE (X2, Y2)-(X3, Y3), 14
 LINE (X3, Y3)-(X1, Y1), 14

 ' Fill the triangle

 PAINT (Xctr, Ymin + 15), 14, 14

 ' Draw rotating pointer

 SinAngle = SIN(Roll * pi / 180)
 CosAngle = COS(Roll * pi / 180)

 ' Compute the corners of the triangle

 X = -7: Y = Yctr - Ymin
 CALL Rotation(X, Y, CosAngle, SinAngle, X1, Y1)
 X1 = Xctr - X1: Y1 = Yctr - Y1

 X = 8: Y = Yctr - Ymin
 CALL Rotation(X, Y, CosAngle, SinAngle, X2, Y2)
 X2 = Xctr - X2: Y2 = Yctr - Y2

 X = 0: Y = Yctr - (Ymin + 9)
 CALL Rotation(X, Y, CosAngle, SinAngle, X3, Y3)
 X3 = Xctr - X3: Y3 = Yctr - Y3

 ' Draw the outline

 LINE (X1, Y1)-(X2, Y2), 15
 LINE (X2, Y2)-(X3, Y3), 15
 LINE (X3, Y3)-(X1, Y1), 15

 ' Fill the triangle

 PAINT ((X1 + X2 + X3) / 3, (Y1 + Y2 + Y3) / 3), 15, 15

 ' Draw the Roll Marks

 XL = 0: YL = Yctr - Ymin - 8:
 XR = 0: YR = Yctr - Ymin - 4

 Angle = 0

 WHILE (Angle < 90)

 IF Angle >= 30 THEN Angle = Angle + 30 ELSE Angle = Angle + 10
 IF Angle = 30 THEN YR = Yctr - Ymin

 SinAngle = SIN((Angle - Roll) * pi / 180)
 CosAngle = COS((Angle - Roll) * pi / 180)

 CALL Rotation(XL, YL, CosAngle, SinAngle, X1, Y1)
 CALL Rotation(XR, YR, CosAngle, SinAngle, X2, Y2)
 LINE (Xctr + X1, Yctr - Y1)-(Xctr + X2, Yctr - Y2), 15

 SinAngle = SIN((-Angle - Roll) * pi / 180)
 CosAngle = COS((-Angle - Roll) * pi / 180)

 CALL Rotation(XL, YL, CosAngle, SinAngle, X1, Y1)
 CALL Rotation(XR, YR, CosAngle, SinAngle, X2, Y2)
 LINE (Xctr + X1, Yctr - Y1)-(Xctr + X2, Yctr - Y2), 15

 WEND

RETURN

GetKey:

 Key$ = ""

 WHILE (Key$ = ""): Key$ = INKEY$: WEND

 SELECT CASE Key$

 CASE IS = UpArrow$

 Pitch = Pitch + 5

 CASE IS = DnArrow$

 Pitch = Pitch - 5

 CASE IS = RtArrow$

 Roll = Roll + 5

 CASE IS = LtArrow$

 Roll = Roll - 5

 CASE IS = Esc$

 Done = True

 END SELECT

RETURN

SUB Rotation (X1, Y1, CosTheta, SinTheta, X2, Y2)

 X2 = X1 * CosTheta - Y1 * SinTheta
 Y2 = X1 * SinTheta + Y1 * CosTheta

END SUB

The FOR ... NEXT, SUB, IF ... THEN, PAINT, and MOD methods are explained in the
QBASIC Help.

Notice that no alphanumeric characters are displayed on this primitive EFIS. This
requires substantially more code to arbitrarily place characters on the screen (needed for
scroll indicators). In the interest of keeping this article to a reasonable length, I have
omitted that capability from the example. The display of alphanumeric characters in
graphics is discussed in the book.

Summary

This has been a very brief and incomplete introduction to the programming of EFIS
displays. My intent was to intrigue the reader and demystify these displays. Although
you may never program an actual display for your aircraft, the software should no longer
seem to be magic or inaccessible. As I am fond of saying, it is just putting dots on the
screen.

Check back on www.kitplanes.com on June 15 for Part 3, the series conclusion.

http://www.kitplanes.com/

	Drawing a line
	Drawing a “Wings Level” Attitude Indicator
	Color Palette
	Attitude Indicator with Roll and Pitch Marks
	Summary

